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Risk and Sustainability:
Assessing Fisheries Management Strategies

Abstract

We develop a theoretical framework to assess the sustainability of fisheries

management strategies, when the bioeconomic dynamics are marked by uncer-

tainty and several conflicting objectives have to be accounted for. Stochastic

viability ranks management strategies according to their probability to sus-

tain economic and ecological outcomes over time. The approach is extended

to build stochastic sustainable production possibility frontiers representing the

trade-offs between sustainability objectives at any risk level, given the current

state of the fishery. This framework is applied to a Chilean fishery faced with

El Niño uncertainty. We study the viability of effort and quota strategies

when catch and biomass levels have to be sustained. We show that i) for these

sustainability objectives, whatever the level of the outcomes to be sustained,

quota-based management results in a better viability probability than effort-

based management, and that ii) the historical quota levels in the fishery were

not sustainable.

Keywords: sustainability, risk, fishery economics and management, stochastic via-

bility.
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1 Introduction

The analysis in this paper has its origin in some actual concerns in the management

of Chilean fisheries. The Jack-Mackerel fishery is faced with El Niño uncertain cycles,

which increase the uncertainty about the resource availability (Barber and Chavez,

1983), making management more difficult (Costello et al., 1998).1 In addition to the

usual objective of maximizing profit, current management aims at avoiding stock

collapse. Sustainable resource management requires a framework accounting for eco-

nomic and ecological objectives under risk.

The standard economic approach to assessing the performance of fisheries man-

agement strategies relies on the expected discounted utility framework (Clark and

Kirkwood, 1986; Reed, 1979; Sethi et al., 2005). This approach has the great advan-

tage of defining a unique value, the expected discounted utility of harvesting, which

characterizes optimal strategies and ranks alternative management strategies. It has,

however, some practical limits when applied to sustainable resource management is-

sues encompassing several dimensions and the concern for intergenerational equity.

First, accounting for ecological objectives requires defining a multi-attribute Social

Welfare Function (SWF) prior to the maximization problem. But when uncertainties

are pervasive and the sustainability issues are affecting multiple and heterogeneous

stakeholders, the task of agreeing on a common SWF could become very tangling.

Second, the discounted utility framework would allow for intertemporal compensa-

tion of good and bad outcomes for the system, which may raise intergenerational

equity issues (in particular if the discount rate is positive).

In practice, fisheries management strategies, often defined as simple “rules of

thumb,” are evaluated in so-called “multicriteria” frameworks (Geromont et al., 1999;

De Oliveira and Butterworth, 2004; Kell et al., 2005; Smith et al., 2007). Such

methods are based on simulations and do not rely on an optimization framework.

They provide no common metrics for conflicting (ecological and economic) objectives

and risk. Therefore they cannot rank explicitly alternative management strategies.

There is thus a gap between theory and practice in resource management. Developing

1In some extreme cases, recruitment uncertainty and applied management decisions have led

to the collapse of important small pelagic stocks, such as the Peruvian anchovy in 1972-1973.
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a practical framework based on solid theoretical grounds to assess the sustainability

of fisheries management strategies under risk is a challenging task.

This paper provides a framework to rank explicitly alternative management

strategies, accounting for conflicting sustainability issues and risk. This framework

echoes the concept of stewardship,2 which defines a sustainable resource management

as one that sustains economic and ecological outcomes over time, corresponding to

a “satisficing” objective à la Simon (1957). Technically, we build on the stochas-

tic viability approach (De Lara and Doyen, 2008). Given a set of multidimensional

indicators, referring to economic or ecological outcomes, viability is defined as the

ability to sustain the levels of the indicators above some thresholds characterizing

sustainability objectives (e.g., minimal biomass, minimal profit). We assess fisheries

management strategies by their probability of achieving these objectives jointly and

at all times over the planning horizon.

While stochastic viability has been used as a simulation tool to examine fisheries

management issues (e.g., Doyen et al., 2012), the present paper differs from previous

studies in two important respects, each constituting theoretical novelties. First, we

embed stochastic viability into a theoretical optimization framework with economic

interpretations, defining a value function for our optimization problem. This value

measures the ability to sustain several outcomes over time. Second, whereas the

thresholds of the viability constraints are exogenously fixed parameters in usual

viability analysis, we treat these sustainability thresholds as explicit arguments of our

value function. This allows us to define and build stochastic sustainable production

possibility frontiers which describe the necessary trade-offs between sustained levels

of economic and ecological outcomes and risk. Such possibility sets depend on the

current (over)exploitation status of the fishery.

Our framework does not rely on an a priori representation of social preferences,

but can be used to help revealing such preferences. Defining the actual sustainabilty

thresholds amounts to determining what has to be sustained over time (Martinet,

2012). This is a social choice problem we do not address explicitly here. It corre-

sponds to a generalized, multidimentional maximin problem (Solow, 1974; Martinet,

2As discussed in the Stern review for climatic change (Stern, 2006).
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2011), with low substitutability between sustainability issues and a strong aversion

to intertemporal inequality on all the dimensions of sustainability. Stochastic sus-

tainable production possibility frontiers can be used to enlighten the social choice of

sustainability objectives in the fishery, and reveal social preferences over sustainabil-

ity issues.

These theoretical novelties allow us to build a bridge between the economic litera-

ture on optimal resource management under risk and the practical-oriented literature

on sustainable fisheries management. The viability probability provides a common

metrics to aggregate the outcomes of the system with respect to the several sustain-

ability dimensions, ranking alternative management strategies. Marginal analysis

makes it possible to examine the trade-offs between sustained outcomes and risk.

This stochastic viability approach is thus closer to economics than the usual multi-

criteria fishery management approaches. It can be implemented when no SWF is

available.

We illustrate the implications of our approach in the case of the (small pelagic)

Chilean Jack-Mackerel fishery subject to El Niño uncertainty. In particular, we

compare effort-based (price-like) and quota-based (quantity-like) strategies in light

of their ability to sustain both catch and biomass levels over time, given the current

information on the resource stock. While the price versus quantity issue in fisheries

have been extensively debated from an economic point of view, our analysis is, to our

knowledge, the first attempt to examine this issue from a sustainable management

perspective.

Section 2 stresses the differences between the literature in fishery economics and

that on fisheries management to motivate our approach. Section 3 presents our

theoretical framework to assess risk and sustainability and to compare management

strategies. We apply this framework to the Chilean Jack-Mackerel fishery case-study

in Section 4. We conclude with remarks on the relevance of our results for practical

fisheries management in Section 5.
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2 Background and settings

Optimality in fishery economics is usually defined as the maximization of the ex-

pected discounted profit of harvest. Depending on the type of uncertainty and

economic specifications, optimal harvesting may correspond to very specific man-

agement strategies and be hard to apply in practice.3 Moreover, in a sustainabil-

ity context, management objectives are often not limited to profit maximization.

Ecosystem-Based Fishery Management aims at conserving resources and sustaining

socio-economic benefits from fishing (Cochrane, 2000; Pikkitch et al., 2004). This

increases the number of objectives and stakeholders (Fletcher, 2005) so that fish-

eries are faced with an unsustainable situation whenever one objective is not met.

Giving the priority to social and economic objectives over ecological ones has been

identified as an important reason for management failure in fisheries (Hilborn, 2007).

Management procedures4 should be ranked according to their capacity to yield ac-

ceptable results with respect to all the sustainability objectives while being robust

to uncertainties (Charles, 1998).

Extending the economic optimization approach to account for ecological objec-

tives is a delicate exercise. In theory, one could define a multi-attribute SWF char-

acterizing completely social preferences over the various dimensions of interest prior

to the optimization problem. Stakeholders, however, may not want to, or may be

unable to agree on a SWF, a form of “collective” bounded rationality resulting in

the impossibility to define a continuous representation of preferences over payoffs

on various dimensions and risks. An alternative option would be to add ecological

3See Reed (1979); Clark and Kirkwood (1986); Sethi et al. (2005); Nøstbakken and Conrad

(2007); Nøstbakken (2008); McCough et al. (2009). When responding to uncertain stock fluctua-

tions, optimality may require strong yearly variations of the TAC, pulse-fishing (Da-Rocha et al.,

2013), and even fishery closure when the stock size is too low (Nøstbakken, 2006), whereas fishing

industries favor stability of catches (Charles, 1998).
4A management procedure (MP) is a set of rules which translates data from a fishery into a

regulatory mechanism, such as total allowable catches or maximum fishing effort (Butterworth

et al., 1997). MPs have been developed (though not always implemented) for a number of fisheries

since their development within the International Whaling Commission in the late 1980s (De Oliveira

and Butterworth, 2004).
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constraints to the profit maximization problem. Note that setting the levels of these

constraints is a social choice problem which should not be overlooked. In the de-

terministic case, the optimization problem provides the marginal cost of complying

with the constraint. This information can be used in a back-and-forth process with

stakeholders to adjust the constraints level and help revealing preferences over the

economic and ecological outcomes. This feature is lost in the stochastic case,5 in

which a theoretical and technical issue rises: How to interpret and to handle con-

straints under uncertainty? One can “translate” the deterministic economic criterion

into its expected value, but it is more difficult to “translate” a constraint in stochastic

terms. Requiring constraint satisfaction with probability one, i.e., that the optimal

strategy satisfies the constraint in all possible states of the world, usually restricts

the decisions so much that the optimization problem loses its interest. Accepting

a risk of constraint violation is another possibility. It amounts to considering the

performance of the system with respect to the ecological constraint, by providing a

measure of the risk to violate it. There are then two outcomes for each strategy: the

expected economic profit and the ecological risk.

In fact, this last option is close to the Management Strategy Evaluation (MSE)

approach.6 MSE relies on simulations to compare the performance of given man-

agement strategies against the conflicting objectives of limiting risk to the resource,

reducing TAC variation over time, and increasing average catches. The results are

usually represented graphically, in a map of “mean catch – risk to the resource” (see,

e.g., Smith et al., 2007). Fig. 1 displays such an output for the Chilean Jack-Mackerel

fishery (MSE performed by Yepes, 2004). “Ideal” management strategies would dis-

play low risk to the resource and high mean catches, and thus lie on the South-East

part of the figure. As there is no common metrics between the objectives, the two

performances cannot be aggregated and undominated strategies cannot be ranked.7

5We shall see that our framework provides a somehow similar information to support the choice

of sustainability constraints in the stochastic case.
6Various scientific tools, mainly in “multicriteria” frameworks, have been developed to support

sustainable fisheries management (Smith et al., 2007). Management Strategy Evaluation is the most

developed one (Butterworth et al., 1997; Charles, 1998; Geromont et al., 1999; Sainsbury et al.,

2000; De Oliveira and Butterworth, 2004; Kell et al., 2005).
7Moreover, the MSE approach provides no information on the opportunity cost of the ecological
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Figure 1: MSE for the Chilean Jack Mackerel fishery: performance of various management strate-

gies in terms of risk to the resource (measured as the probability that the stock falls below 20% of

the pre-exploitation spawning stock biomass) and expected mean annual catches (used as a proxy

variable for the economic objective). Adapted from Yepes (2004).

The problem mainly comes from the fact that the economic and ecological objec-

tives are not treated in the same way, one being an outcome to maximize while the

other is a constraint to satisfy. The usual approach to account for risk in economics

is to define preferences characterizing value (i.e., to aggregate economic and ecolog-

ical outcomes in a SWF) and to account for risk by computing the expectation of

value.8 The MSE approach compares an expected economic value with an ecological

risk (probability to overshoot a given ecological threshold). The ecological objective

is defined apart form the economic value, which makes it difficult to aggregate the

two outcomes.

Assessing the sustainability of resource management strategies under risk is thus

a challenge when there is no SWF describing preferences over the different issues.

constraint and about the marginal gains from relaxing its level.
8For some types of utility functions, e.g., Constant Absolute Risk Aversion functions, prefer-

ences under risk may be represented by means of a linear function of expected (mean) profits and

a simple proxy of risk such as the variance of profits.
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To tackle this challenge, we describe a theoretical framework echoing the concept of

stewardship. We assume that intertemporal equity requires sustaining economic and

ecological performances of the system over time. These conditions can be represented

by constraints on (ecological and economic) indicators which should be maintained

above some thresholds at all times. This issue is addressed within the stochastic

viability framework, which defines the (maximal) probability of satisfying jointly

several viability constraints over time in dynamic uncertain models. Any manage-

ment strategy satisfies the viability constraints with some probability. This viability

probability provides a common metrics to assess and rank alternative strategies.

This approach treats all the relevant sustainability objectives as minimal out-

comes to be sustained over time. Treating the viability thresholds as arguments of

a the stochastic viability value function, we build stochastic sustainable production

possibility frontiers, which exhibit the necessary trade-offs between the targeted sus-

tained outcomes and risk. Such frontiers can be used in the social choice of defining

sustainability objectives.

3 A metrics for risk and sustainability

Let us formalize the decision problem in a general framework. The model and method

below are appropriate for setting up any stochastic viability analysis, and therefore

can be applied to a variety of resource management situations or to environmental

problems with stocks of pollutants. We provide examples based on the fishery case.

3.1 Modeling framework

Dynamical system Consider a resource harvesting model, which accounts for

dynamics, uncertainties and exploitation decisions. The model is described by the

following discrete-time control dynamical system

x(t+ 1) = G
(
t, x(t), c(t), ω(t)

)
, t = t0, . . . , T − 1 , x(t0) = x0 , (1)

where
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• the time index t is discrete, belonging to T = {t0, . . . , T} ⊂ N; the time period

[t, t+ 1[ is a year for instance; t0 is the initial time ; T is the finite horizon;

• the state vector x(t) ∈ X ⊂ Rn may be a vector of abundances at ages for

one or for several species; the state vector could also represent abundances at

different spatial patches or include capital stocks (e.g., fishing vessels);

• the control vector c(t) ∈ C ⊂ Rp may represent catches or harvesting effort;

• ω(t) ∈ W ⊂ Rq denotes a vector of uncertainty which affects the dynamics at

time t (e.g., recruitment or mortality uncertainties in a population dynamic

model, climate fluctuations or trends, unknown technical progress, price un-

certainty);

• G : T×X×C×W→ X is the dynamics as, for instance, one of the numerous

population dynamic models, such as logistic or age-class models; it may also

include capital accumulation dynamics;

• x0 ∈ X is the given initial state for the initial time t0. It is supposed to be

known.

The notation c(·) means a control trajectory c(·) =
(
c(t0), . . . , c(T )

)
whereas x(·) =(

x(t0), . . . , x(T )
)

stands for a state trajectory.

Probability distributions over scenarios A scenario is a sequence of uncer-

tainty vectors denoted by ω(·) = (ω(t0), . . . , ω(T − 1)). We define the set of all

possible scenarios as

Ω = WT−t0 . (2)

We assume that the set of scenarios Ω is equipped with a probability distribution P.9

Formally, this probability P could either be an objective probability derived from a

statistical model using real world data (as done in our case study in next section),

or a subjective probability representing decision-makers’ beliefs.

9Technically, the probability P is defined over the Borel σ-algebra of Ω. In what follows, we

assume proper measurability assumptions for all the functions we consider.
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Decision rules and management strategies When uncertainties affect the dy-

namics, closed loop or feedback controls ĉ
(
t, x(t)

)
taking the uncertain state evolution

x(t) into account display more adaptive properties than open-loop controls c(t) de-

pending only on time. A (state) feedback is a decision rule which assigns a control

c = ĉ(t, x) ∈ C to any state x for any time t. From now on, we shall use the term

(management) strategies to refer to feedback decision rules. The set of all possible

strategies is denoted by C.

3.2 Stochastic Viability

Sustainability objectives described with indicators and thresholds Con-

sider K real-valued functions Ik : T×X×C→ R, for k = 1, . . . , K, which represent

instantaneous indicators having economic or ecological meaning (e.g., profit, annual

catches, or spawning stock biomass). Thresholds τ1 ∈ R, . . . , τK ∈ R, measured in

the same unit as the indicators (e.g., money, tonnes) define constraints formalizing

sustainability objectives:10

Ik
(
t, x(t), c(t)

)
≥ τk , ∀k = 1, . . . , K , ∀t = t0, . . . , T . (3)

In the viability framework, a trajectory that does not satisfy one (or more) of

the constraints at some time is not viable. At a given time period, the violation

of some of the sustainability constraints is not compensated by good outcomes in

other sustainability dimensions. The violation of the sustainability constraints at

some time periods is not compensated by good outcomes at other time periods.11

The requirement to satisfy all the constraints at all times reflects the idea that

sustainability has to encompass ecological and economic issues in an intergenerational

equity perspective.

10We consider sustainability “goods,” for which an ad-hoc indicator is defined. This indicator is

then constrained to be above a threshold. For “bads,” such as pollution, one can take their negative

value as an indicator (e.g., for CO2 concentration).
11For given sustainability thresholds, there are trade-offs neither between sustainability issues

nor between time periods. All trade-offs are made when the thresholds are defined (Martinet, 2011,

2012). We shall emphasize how our framework can be used to support the definition of threshold.
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In a stochastic framework, it is generally impossible to satisfy the constraints for

all scenarios ω(·). We coin viable scenarios the uncertainty scenarios for which all

the viability constraints are satisfied at all times under a given strategy.

Viable scenarios associated with a management strategy For any man-

agement strategy ĉ, initial state x0, and initial time t0, we define the set of viable

scenarios by:

Ωĉ,t0,x0 =


ω(·) ∈ Ω

∣∣∣∣∣∣∣∣∣∣∣∣∣

x(t0) = x0

x(t+ 1) = G
(
t, x(t), c(t), ω(t)

)
c(t) = ĉ

(
t, x(t)

)
Ik
(
t, x(t), c(t)

)
≥ τk , k = 1, . . . , K

t = t0, . . . , T


. (4)

For a given strategy ĉ and a given scenario ω(·), the dynamics (1) produces a state

trajectory x(·) and a control trajectory c(·) once one applies the strategy c(t) =

ĉ(t, x(t)). Therefore, any viable scenario ω(·) in Ωĉ,t0,x0 is such that the state and

control trajectory
(
x(·), c(·)

)
driven by the strategy ĉ satisfies the constraints (3).

In the ideal case where there exists a strategy ĉ such that Ωĉ,t0,x0 coincides with Ω,

viability can be achieved for all scenarios by applying this strategy. When this is

not the case, as Ω is equipped with a probability P, we can measure the likeliness of

a strategy ĉ to meet the objectives by the probability of associated viable scenarios,

P [Ωĉ,t0,x0 ], which is called the viability probability associated with the management

strategy ĉ, the initial time t0, and the initial state x0.

Management strategy assessment by stochastic viability For any given set

of sustainability thresholds τ1, . . . , τK , a management strategy can be assessed by its

viability probability. To stress the dependency upon thresholds, let us introduce the

notation

Π(ĉ, τ1, . . . , τK) = P


ω(·) ∈ Ω

∣∣∣∣∣∣∣∣∣∣∣∣∣

x(t0) = x0

x(t+ 1) = G
(
t, x(t), c(t), ω(t)

)
c(t) = ĉ

(
t, x(t)

)
Ik
(
t, x(t), c(t)

)
≥ τk , k = 1, . . . , K

t = t0, . . . , T


. (5)
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This viability probability is a common metrics to evaluate the consistency of a given

strategy and sustainability objectives. The higher this probability, the lower the risk

of violating the sustainability constraints.

Note that, as for expected discounted utility, the stochastic viability analysis de-

pends on the probability distribution P. In particular, as we deal with intertemporal

issues, one should be cautious with how P captures temporal dependencies between

uncertainties (e.g., independent random variables, Markov chains or time series).

Studying how the results are sensitive to the probability distribution is beyond the

reaches of this paper.

Ranking of management strategies The stochastic viability approach ranks

strategies according to their viability probability. A management strategy ĉ is “more

viable” than another if the corresponding set of viable scenarios has a higher prob-

ability. A most viable strategy ĉ?(τ1, . . . , τK) is one which maximizes the viability

probability Π(ĉ, τ1, . . . , τK) for a given set of sustainability thresholds τ1, . . . , τK over

all possible strategies ĉ ∈ C.

3.3 Theoretical extension of the stochastic viability frame-

work

This paper is novel in that we treat the viability thresholds as arguments of the

viability probability. This defines a value function for our sustainability problem.

A “value function” for sustained outcomes The maximal viability probability

Π?(τ1, . . . , τK) = max
ĉ∈C

Π(ĉ, τ1, . . . , τK) (6)

is the highest probability with which objectives (τ1, . . . , τK) can be sustained. It

is the value function of the stochastic viability optimization problem. This value

function depends on the thresholds levels. We use this value function to describe the

trade-offs among sustainability objectives.
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Stochastic sustainable production possibility frontiers When the maximal

viability probability function Π?(τ1, . . . , τK) smoothly varies w.r.t. thresholds lev-

els (as will generally be the case when the probability distribution P has a smooth

density), the marginal variation of viability probability with respect to the threshold

level τk is ∂
∂τk

Π?(τ1, . . . , τK). This represents the marginal cost, in terms of viability

probability, of increasing this constraint’s level. It provides an information on the dif-

ficulty to sustain the corresponding outcome over time, given the other sustainability

objectives.

The value function (6) can be used to build stochastic sustainable production

possibility frontiers exhibiting the trade-offs between sustained levels of outcomes

and viability probability. In particular, for any confidence level π ∈ [0, 1], it is

possible to define the threshold levels τ1, . . . , τK which make it possible to achieve

Π?(τ1, . . . , τK) = π. The marginal rate of substitution between thresholds τi and τj

is then defined by

∂Π?(τ1, . . . , τK)/∂τi
∂Π?(τ1, . . . , τK)/∂τj

=
∂τj
∂τi |Π?(τ1,...,τK)=π

(7)

Along an iso-value viability probability curve, this rate measures the necessary trade-

offs between sustainability objectives, at a given risk level, i.e., how much one objec-

tive must be reduced to increase the other without changing the viability probability.

Suboptimal cases Our framework can be used even when it is not possible to

identify an optimal strategy (for example, because it cannot be computed). In a

second-best setting, it is possible to consider subsets of strategies C̃ ⊂ C and define

the associated (sub-optimal) viability probability:

Π̃(τ1, . . . , τK) = max
ĉ∈C̃

Π(ĉ, τ1, . . . , τK) (8)

While we recognize the pitfalls of making such comparisons with an ad hoc reduced

number of management strategies, this provides an analytical tool for comparing

and ranking realistic management strategies according to a well-defined yardstick,

that is, based on the corresponding viability probability. This ranking exercise could

be useful to support decision-making when given strategies having management rel-

evance (e.g., effort-based or quota-based strategies) are discussed by stakeholders.
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The viability probability of the strategies then provides a metrics to rank them. In

particular, letting sustainability thresholds vary, it is possible to define on which

range of sustainability thresholds levels one type of strategies performs better than

another.

4 A case-study: the Chilean Jack-Mackerel fish-

ery

We model the Chilean Jack-Mackerel fishery and use it as a case-study to apply the

stochastic viability approach, and in particular the theoretical extensions described

in the previous section.

4.1 Description of the fishery and management issues

The Jack-Mackerel fishery has been the largest in Chile for many years, both in

terms of annual catch and economic value.12 Like other small pelagic stocks, this

fishery is faced with the recurrent appearance of El Niño uncertain cycles. Since

the late 1990s, the fishery has been managed under a yearly-defined Total Allowable

Catch (TAC) and closed entry, with a particular concern about the stability of catch

levels over time. Additionally, since the mid-2000s the Jack-Mackerel fishery has

been one of the pioneering in Chile to include biology-related risk indicators in its

management practice.13 These indicators provide additional information within the

policy-decision process, with the underlying objective of capping biological (collapse)

risk, but are not encompassed in a formal framework to trade off this risk against

measures of economic return. Despite the management procedure, the Chilean Jack-

Mackerel fishery is currently facing a crisis.

Historical data for the fishery are provided in the Appendix, Table 1. Year 2002

12Annual catch peaked at 4.4 million tons in 1995. Until recent years, value generation has been

around US$ 400 millions of yearly sales.
13SUBPESCA, the regulatory body for Chilean fisheries, started assessing the probabilities of re-

ducing the spawning stock biomass (SSB), relative to a historical base level, for various exogenously

defined quota levels (see SUBPESCA (2004, p. 26-27) and IFOP (2006, p. 33-39)).
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appears to be a turning point for two reasons: i) the biomass levels were half its peak

in the late 1980s and recruitment was half its levels in the previous 5 years,14 ii) the

fish stock’s spatial distribution changed (Peña Torres et al., 2014), partly moving

the stock outside the Chile’s EEZ, which triggered a re-opening of an international-

waters jack mackerel fishery (see column (2) in Table 1).

In spite of the changes in the biology of the stock and its exploitation pattern

after 2002, the Chilean fisheries regulator decided to keep basically constant TAC

levels for the Chilean fleet targeting jack mackerel within and beyond the Chilean

EEZ, all along the first decade of the 2000s (see column (3) in Table 1). The biomass

level started a monotonic decline, from 48% of the virginal Spawning Stock Biomass

(SSBvirg)15 in 2002 down to 16% in 2012. The management strategy changed only

in 2011, when the TAC fell by 76% between 2010 and 2011, from 1,300 to 315 ktons,

and was about 250 k-tons in 2013.

The period 2002–2011 is thus of particular interest for this fishery. It covers 10

years of management, which is the management horizon used by IFOP. It starts with

a change in the biology of the stock, and ends with a collapse of the fishery and a

change of the management strategy. We model this period, taking 2002 as the initial

year for our simulations, with a 10 years horizon.

Our modeling exercise has two objectives. First, we assess the sustainability of

some management strategies and compare these strategies to the historical evolution

of the fishery. Second, we build the stochastic sustainable production possibility

frontiers for the fishery given the 2002 stock. This allows us to determine what were

the levels of sustainable outcomes given the stock at the beginning of the modeling

period.

14This was probably related to lagged effects from the very strong 1997/98 El Niño event (Peña

Torres et al., 2007, 2014).
15The Chilean fishery research institute (IFOP) estimated this parameter at SSBvirg = 14.3

million tons. They use the maximum recorded SSB in this fishery (during year 1988) as a proxy.
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4.2 Bioeconomic model16

Biology: We describe the dynamics of the Chilean Jack-Mackerel stock by an age-

class model (Quinn and Deriso, 1999; Tahvonen, 2009) with a Ricker recruitment

function.17 Time is measured in years. Initial year is t0 = 2002 and the final horizon

is T = 2011. The time index t = t0, t0 + 1, . . . , T represents the beginning of year t.

Let A = 12 denote the maximum age group, and a ∈ {1, . . . , A} an age class index,

all expressed in years. The vector N = (Na)a=1,...,A ∈ RA
+ is made of abundances at

age: for a = 1, . . . , A − 1, Na(t) is the number of individuals of age between a − 1

and a at the beginning of year t; NA(t) is the number of individuals of age greater

than A− 1.

A dynamics of the form of eq. (1) is detailed in the Appendix (eqs. 11, 13 and 14).

The state vector (A + 1-dimensional) is x(t) =
(
N1(t), . . . , NA(t), SSB

(
N(t − 1)

))
,

where the spawning stock biomass (SSB) is defined by eq. (13). The fishing activity is

represented by a fishing effort multiplier λ(t), supposed to be applied continuously

during the period t. The control is thus c(t) = λ(t). Total annual catches Y ,

measured in million tons, are given by the Baranov catch equation (eq. 12).

El Niño cycles model: The El Niño phenomenon is the result of a wide and

complex system of climatic fluctuations between the ocean and the atmosphere,

which frequency and intensity are uncertain. We simulate the El Niño uncertain

cycles using a model with a periodic part and an error term, to produce a cycle with

random shocks. Details can be found in the Appendix.

Economics: We make the following economic assumptions, which are standard

(Reed, 1979; Clark and Kirkwood, 1986; Clark, 1990).

(a1) Demand is infinitely elastic. Indeed, harvest from this fishery is mainly pro-

cessed as fish meal, a commodity faced with high demand substitution. This

16Data, parameters and computational details are described in the Appendix.
17The Ricker model is frequently used for species with highly fluctuating recruitment, involving

high fecundity as well as high natural mortality rates (Begon and Mortimer, 1986). These two

features characterize small pelagic species, such as Jack-Mackerel.
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fishery is thus essentially a price-taking industry, and we assume that any unit

harvested is sold for a fixed price, invariant in time.

(a2) Per unit harvest costs are not dependent of harvest size, but vary with popu-

lation abundance. These costs increase as the size of the population decreases.

This assumption is equivalent to assuming that fishing effort has a constant

unit cost, and that Catches Per Unit of Effort (CPUE) decrease when the stock

decreases.

Under these assumptions, as the CPUE decreases when the stock size falls, there

is a minimal stock size under which the marginal cost of fishing effort (which is

constant) is higher than the marginal revenue of fishing effort. We assume that no

extra fishing effort is done once the marginal profit is nil. This implies that there is

an upper bound for fishing effort.

For fisheries satisfying these assumptions, price and cost levels do not have a

qualitative effect on our results. Usually, a regulator observes prices, but fishing

costs are private information, depending on vessels’ specific factors. Profit functions

are thus very difficult to estimate, unless strong assumptions are made on fleet ho-

mogeneity. Therefore, in practice, the usual approach is to use catches as a proxy

for revenue and fishing effort related variables as proxy for costs. As quotas are de-

fined in quantity terms in practice, it is reasonable to focus on harvest quantity and

fishing effort as proxy of revenue and fishing costs. This assumption is the same as,

for example, in Reed (1979), Clark and Kirkwood (1986) and Sethi et al. (2005), in

which the expected discounted sum of harvest is maximized instead of the expected

discounted sum of profit.

4.3 Economic and biological sustainability objectives

We consider the ecological objective of sustaining the SSB above some limit defined

as a percentage of SSBvirg. This objective is formalized by the constraint

SSB
(
N(t)

)
SSBvirg

≥ p , ∀t = t0, t0 + 1, ..., T , (9)
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where the threshold p denotes the desired minimum percentage of SSBvirg to be

preserved over time. In our analysis, p ∈ [0.15; 0.25], which means that the constraint

on the SSB(N(t)) varies from 15% to 25% of the virginal SSB.18 The constraint (9)

corresponds to the following indicator and threshold: I1(t, x(t), c(t)) =
SSB

(
N(t)
)

SSBvirg
and τ1 = p.

We also consider the socio-economic objective of sustaining the annual yield above

a level ymin:

Y (N(t), λ(t)) ≥ ymin , ∀t = t0, t0 + 1, ..., T . (10)

The minimum level of landings to be sustained over time (ymin) can take values from

[0; 2] million tons, corresponding to relevant catch levels observed in this fishery all

along the 2000s. The constraint (10) corresponds to the following indicator and

threshold: I2(t, x, c) = Y
(
N, λ

)
and τ2 = ymin. This constraint presumes that the

fishery regulator aims at keeping a minimum level of fishing activity, possibly due to

socioeconomic considerations.

4.4 Viability assessment of management strategies

Using the stochastic viability approach, we compare management strategies for the

Chilean Jack-Mackerel fishery.

Even when optimization approaches provide a description of “optimal” manage-

ment strategies, fisheries are often managed with much simpler tools.19 Constant

fishing effort and constant quotas are two basic management strategies. The former

approach, also known as fixed fishing mortality, is based on advice by biologists and

results in fluctuating harvest as the stock fluctuates. The optimal strategy may be

neither of these two (Hannesson and Steinshamn, 1991), but these rules of thumb are

still frequently discussed as potential management strategies (and sometimes indeed

18In the case of South African small pelagic fisheries (sardines and anchovies) in the late 1980s

and early 1990s, the fishery regulator considered p = 0.2 when applying such biological criteria

(Butterworth and Bergh, 1997).
19For example, Singh et al. (2006) described the Alaskan pacific halibut stock as being managed

by setting the yearly harvest as a fixed fraction of the exploitation biomass; this constant harvest

rate rule is shown to smooth the catches over time more than the optimal policy would do it.
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used) in some fisheries. Chilean fisheries were de facto managed under a constant

effort rule in the 1980s and 1990s (frozen maximum effort). Since then, a quota

system has been in use, with a posteriori very small changes in the TAC levels from

year to year. For example, the pursued management strategy for the Jack-Mackerel

fishery over the studied period does resemble a constant quota-type of policy (see

Table 1).

We thus focus on two different types of strategies: constant fishing effort and

constant quota, both stationary over a fixed period of 10 years.

A constant effort strategy (CES) is a strategy defined by a constant effort20

λ(t, N) = λ. The set of all possible constant effort strategies is denoted by C̃E ⊂ C.
A constant quota strategy (CQS) is a strategy implicitly defined by a constant

quota Y . The associated fishing effort multiplier λ̂(t, N) is such that Y
(
N, λ̂(t, N)

)
=

Y when this is possible, i.e., when the corresponding effort level is below the upper

bound for fishing effort. If this is not the case, the actual catch level may be lower

than the quota. The set of all possible constant quota strategies is denoted by

C̃Q ⊂ C.
For each subset of strategies C̃E and C̃Q, we compute the associated maximal

viability probability as a function of the two sustainability thresholds: For each cou-

ple (p, ymin) ∈ [0; 2]× [0.15; 0.25] of economic and ecological thresholds,21 we define,

within each subset of management strategies, the level of the policy instrument which

results in the highest viability probability (best constant quota, or best constant ef-

fort, to sustain the given objectives). The viability probability is approximated by a

frequency given by Monte Carlo simulations (over 1, 000 simulations), and we com-

pute a 95% confidence interval at which the viability probability belongs. These via-

bility probabilities are displayed in Fig. 2. For each strategy (left-hand side panel for

constant-effort strategies and right hand-side panel for constant quota strategies),

we draw iso-probability curves over the two thresholds, for the levels of maximal

viability probability {0; 0.1; 0.5; 0.9; 0.99; 1}. Both graphics in Fig. 2 are a represen-

20In our model, fishing mortality is proportional to fishing effort when the fishing technology is

constant. The constant effort strategy is thus identical to the constant fishing mortality strategy

depicted here.
21Technically, we discretize the intervals.
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Figure 2: Maximal viability probability of effort and quota strategies (1,000 Monte-

Carlo simulations). Isoprobability cirves are drawn for values {0; 0.1; 0.5; 0.9; 0.99; 1}.

tation of the “stochastic viability value” of each type of strategy as a function of the

sustainability thresholds (see eq. 5).

Ranking management strategies For any given couple of sustainability thresh-

olds, one can rank the alternative management strategies using their viability prob-

ability. It allows us to identify sustainability objectives for which a strategy is likely

to perform better from a viability point of view than the other. To do so, we deter-

mine if the confidence interval for the viability probability of one type of strategies

lies strictly above the confidence interval for the other strategies. Fig. 3 exhibits the

strategies with the highest viability probability for each couple (p, ymin) of biological

and economic thresholds. The domain, in terms of sustainability thresholds, where
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constant-quota strategies strictly perform better than constant effort strategies is in

black. The gray area corresponds to threshold levels at which the performance of

both policy types cannot be statistically distinguished (that is, where the confidence

intervals cross). This happens only for viability probabilities close to 1, i.e., for

objectives which are easily sustained. The white area corresponds to unsustainable

objectives, i.e., thresholds with a viability probability close to zero.

We conclude from this analysis that, for any sustainability objective in the studied

range, constant-quota strategies perform better than constant-effort strategies to

sustain catches and biomass levels.22

This dominance of quota-based strategies over effort-based strategies is not sur-

prising given the nature of the sustainability constraints considered. To explain

this, let us refer to the theoretical result of De Lara and Martinet (2009). In a

general framework illustrated with an application to fishery, they show that, when

the dynamics and the viability constraints satisfy some monotonicity properties, the

maximal viability probability is achieved with the feedback rule which maximizes

the escapement level given the satisfaction of the viability constraints at the current

time. This management strategy can be interpreted as a “precautionary rule.” It

ensures the satisfaction of the economic objective at present time while maximizing

the probability to achieve the economic and ecological objectives in the future.23

When the economic constraint is a minimal catch level, the rule corresponds to a

constant quota at the constraint’s level.

As the Ricker recruitment function is non-monotonic, with a declining part for

22This results is robust to the initial state of the fishery. We performed a sensitivity analysis for

different initial stocks defined as multiples of the 2002 stock (from 60% to 150%). The output of

this sensitivity analysis is available on request.
23Note that, for many fisheries, the International Council for the Exploration of the Sea (ICES)

management strategy is based on the somehow opposite strategy: the catch level is set at the

highest level compatible with the biological conservation target at the following year, given a con-

fidence interval (precautionary fishing mortality value) (De Lara et al., 2007; Kell et al., 2005). By

construction, this strategy leads the stock close to the ecological constraint, with a risk of fishery

closure in the short-medium term if the stock falls below the biological conservation threshold. The

strategy maximizing the viability probability is conservative and results in keeping the resource

stock as “far” as possible from the biological threshold, given the economic objective.
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Unsustainable objectives:
Viability probability very close to 0
for both types of strategies

Sustainability objectives for
which constant-quota strategies
have a higher viability probability
than constant-effort strategies

Equality:
Sustainability objectives achievable
with a viability probability very close to 1
for both types of strategies
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Figure 3: Comparison of the CES and CQS policy types (1,000 Monte Carlo’s sim-

ulations).

large stocks, the model studied here is not monotonic in the sense of De Lara and

Martinet (2009). We have noticed, however, that the range of SSB modeled belongs

to the monotonic part of the Ricker function, which means that the model behaves

as if it were monotonic. As one of the viability constraint is a minimal catch level,

a constant quota at this level results in the highest viability probability.

The issue of determining which of effort-based and quota-based strategies dom-

inates in fisheries economics is a particular case of the “prices versus quantities”

debate. A management strategy using direct control of fishing effort has similar fea-

tures as tax based management (Danielsson, 2002; Weitzman, 2002). By imposing a

maximal fishing effort, one imposes a maximal marginal cost, which interrupts the

fishing period before the open access equilibrium. Controlling the effort is like having
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a particular landing fee (such as a very large fee starting at some point). Such fees

are (relatively) better able to control the (marginal) fishing effort (or cost), but suffer

the drawback of being unable to control catch levels. On the contrary, harvest quotas

have the advantage of fixing the total quantity of fish being caught, but suffer from

the drawback of being unable to control the possible excessive effort being exerted to

fish down a stock that is experiencing a low recruitment for the fishing period. The

related literature has shown that, depending on the characteristics of the fishery (i.e.,

its biological dynamics and economic structure) and the type of uncertainty affecting

the model (i.e., whether fish stock and/or economic returns are uncertain), either

quota or effort tools may perform better in terms of discounted payoffs (Hannesson

and Steinshamn, 1991; Quiggin, 1992; Danielsson, 2002; Jensen and Vestergaard,

2003; Hannesson and Kennedy, 2005; Hansen, 2008). In the stochastic viability

framework, the result not only depends on the characteristics of the fishery under

study, but also on the nature of the sustainability objectives.

Stochastic sustainable production possibility frontiers Fig. 2 presents what

we have defined as stochastic sustainable production possibility frontiers in the the-

oretical analysis of section 3.3. The lines denoting the iso-probabilities represent the

trade-offs between sustainability thresholds (p, ymin) at various viability probability

levels, as characterized by eq. 7. For any given viability probability level, one has to

reduce a sustainability threshold to increase the other. There is also a trade-off be-

tween the sustainability threshold and the confidence in sustainability achievement.

Increasing the thresholds results in a decrease of viability probability.24

Such graphical representations may be useful to support the social choice of

sustainability objectives. They exhibit the necessary trade-offs between the policy

objectives represented by the sustainability thresholds, along with the risk of failing

to (simultaneously) achieve them.25 When no SWF can be determined prior to the

evaluation of management strategies, and there is a strong concern for sustaining eco-

24The figure could be made 3-dimensional, with the viability probability as a function of the

thresholds, to emphasize these two different trade-offs.
25Note that these trade-offs are between sustainability objectives, and not between different

management strategies (as it was the case for the MSE of Fig. 1).

24



logical and economic outcomes over time, presenting the trade-offs over all possible

sustainability objectives to stakeholders may help them revealing their preferences.

Discussion We can draw some policy-oriented conclusions from our analysis. The

important result is not the dominance of quota over effort strategies, but the rep-

resentation of the trade-offs between sustainability issues by means of stochastic

sustainable production possibility frontiers.

At the early 2000s biomass levels were already experiencing (and almost for a

consecutive decade) a worsening status. As a consequence of this, our simulation

results report non-viable solutions for any threshold pair with p ≥ 25%, either under

CQS or CES, whatever the minimum catch threshold.

Over the examined period, the TAC in the fishery has been maintained above

1.3 millions tons. Actual catches did not sustained this level. Notwithstanding the

ecological constraint, one can see in Fig. 2 that this catch level is not sustainable

with a high probability. Even the best policy among those studied has a low viability

probability. This is illustrated with Fig. 4, which compares simulated trajectories for

the best constant-quota and constant-effort strategies for sustainability thresholds

(p, ymin) = (0, 1.3) to the historical data. The catch level of 1.3 million tons is

sustained only in few scenarios (one for CES, and three for CQS).

The main message to the Chilean regulation bodies would be that, notwithstand-

ing the choice of the instrument, the historical quota targets were poorly sustainable.

The information encompassed in our stochastic sustainable production possibility

frontiers could have been of some help in setting lower sustainability targets. For

example, Fig. 5 represents simulated trajectories for the best constant-quota and

constant-effort strategies for sustainability thresholds (p, ymin) = (0.2, 0.8), which

are achievable with a higher probability than historical levels of quotas. All the

depicted trajectories are viable.

However, these results should be interpreted with cautious. One should not

underestimate political economy considerations. A basic reason for pursuing the

high quota management strategy, despite worsening biomass numbers, was that the

Chilean authorities wanted to maintain, as long as possible, high numbers of ‘his-
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Figure 4: Examples of trajectories under CQS and CES for sustainability thresholds

(p, ymin) = (0, 1.3), compared with historical data (5 simulations).

torical fishing presence’ of the Chilean fleet operating in this fishery26; and this with

a view on strengthening Chile’s bargaining position in case of facing in the near

future multi-country negotiations about the allocation of country-specific TACs for

this common-pool stock.27 Time lags were indeed needed to find a more reason-

26The drastic 2011 fall in the TAC for the Chilean fleet was related to a change of Government

authorities in Chile, together with the (expected) plain realization that biomass levels (and real

catch levels) had become inconsistent with maintaining the previous TAC levels.
27Since the early 2000s, expectations started to emerge about the possibility of creating a new

(multi-country) Regional Fisheries Management Organization (RFMO) for fishing this straddling

stock. Initial formal talks for establishing a new RFMO for fishing jack mackerel in the Eastern

South Pacific were started in 2006 (by Chile, Australia and New Zealand). By March 2014, 11

nations (Chile included) had ratified their full membership in this new multi-country (RFMO). The
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Figure 5: Examples of trajectories under CQS and CES for sustainability thresholds

(p, ymin) = (0.2, 0.8), compared with historical data (5 simulations).

able (multi-country) management solution, and those lags conditioned the Chilean

authorities’ decision to keep ‘as-if constant’ TACs (and the resulting ‘high’ Chilean

catches), as a response to the common-pool stock issue created by the partial redis-

tribution of the jack mackerel stock into open seas waters beyond Chile’s EEZ.

enforcement of formally binding fishing management measures (including the allocation of multi-

country TACs) indeed started from 2013. (By mid-2012, another 21 nations were still debating

whether or not to become members of this new RFMO).
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5 Conclusions

Many natural resources management problems, such as fisheries management, are

marked by dynamics and uncertainty. When there are conflicting economic, eco-

logical and social objectives, multicriteria evaluation methods are required to rank

the potential management strategies, taking into account uncertainty. This is the

purpose of the Management Strategy Evaluation approach, which characterizes po-

tential management strategies with a set of performance statistics. However, due to

the absence of a common metrics for comparing and trading-off conflicting issues,

decision-makers are left without tools to rank the various management strategies.

To contribute to policy-oriented decision making in natural resource management

problems, we have developed a framework based on stochastic viability. A set of

constraints represents the various sustainability objectives. Within this framework,

management strategies are ranked according to the probability that the resulting

intertemporal trajectory satisfies all of the objectives all along the planning horizon.

The viability probability ranks the various management options, defining the strategy

which results in the highest viability probability.

This approach is complementary to the traditional economic approach when it is

not possible to define a multi-attribute social welfare function. The objective is to

maximize the probability to achieve the sustainability constraints. The stochastic

viability is a good representation of decision problems involving several stakeholders

interested in the sustained level of different indicators. All the dimensions of sus-

tainability are treated in the same way, as constraints representing minimal rights

to be guaranteed to all generations. Preferences of the decision-maker are expressed

when sustainability thresholds are defined.

The theoretical extension of stochastic viability presented in this paper can help

the stakeholders in defining what should be sustained. Our stochastic viability value

function exhibits the trade-offs between sustainability objectives (thresholds) and

viability probability. By building stochastic sustainable production possibility fron-

tiers, it is possible to describe the set of objectives that can be sustained with some

probability.

The proposed stochastic viability methodology is general and can be applied to

28



a wide range of problems. As an example, we examined the management of a real

fishery, with estimated parameters. Using numerical techniques, we examined the

efficiency of effort and quota based management strategies in achieving sustainability

objectives defined as constraints on biological and economic indicators. Monte Carlo

simulations were run to estimate the viability probability of each policy, with respect

to the objectives.

The main contribution of the paper is to develop a framework which provides

a common metrics to compare management strategies and to describe trade-offs

between sustainability objectives, in a complementary way to the MSE approach.

The proposed approach can thus be used to fill the gap between the optimality

literature of economic theory and practical decision-making.
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Appendix: Chilean Jack-Mackerel case study: data,

parameters and model

Historical data for the Chilean Jack-Mackerel fishery Table 1 details the

historical values of interest for the fishery.

 

(1) (2) (3) (4) (5) (6) (7)

Total Catch Total Catch DWFNs TAC F. Effort Multiplier Recruits SSB Total

Chilean Fleet (beyond Chilean EEZ) Chilean Fleet Chilean Fleet Biomass

(103 tons) (103 tons) (103 tons) (implicit  l value) (103 individuals) (103 tons) (103 tons)

1980 562 340 - 21738 10564 15973

1981 1061 438 - 27215 10825 17114

1982 1495 733 - 27652 10335 17861

1983 865 849 - 25645 10432 17471

1984 1426 1060 - 47886 10265 19017

1985 1457 799 - 60875 10653 20827

1986 1184 838 - 28735 12190 21942

1987 1770 863 - 15962 13822 22698

1988 2138 863 - 17644 14304 22534

1999 2391 876 - 23051 13652 21673

1990 2472 872 - 26461 12616 20751

1991 3020 544 - 20834 11428 19708

1992 3212 38 - 16344 10377 18002

1993 3236 0 - 14933 9392 16140

1994 4041 0 - 16942 7824 14545

1995 4404 0 - 18434 5775 12596

1996 3883 0 - 21071 4557 10378

1997 2917 0 - 24326 3844 9345

1998 1613 0 - 21460 4070 8862

1999 1220 0 1902 24704 4815 9622

2000 1235 2 - 24298 5643 10771

2001 1650 20 1425 20597 6312 11720

2002 1519 76 1625 0,32 12873 6848 11852

2003 1421 158 1350 0,46 8365 7073 11559

2004 1452 295 1475 0,45 6339 6722 10793

2005 1431 244 1484 0,42 3112 5988 9482

2006 1380 363 1400 0,39 5725 4934 8167

2007 1303 439 1600 0,36 7040 3685 6812

2008 896 405 1600 0,22 5808 2740 5348

2009 835 372 1400 0,17 7011 1967 4364

2010 465 240 1300 0,08 7826 1706 3586

2011 247 61 315 0,03 7158 1910 3418

2012 227 40 252 0,02 10892 2286 4034

2013 242 47 250

(106 individuals) 

Table 1: (a) DWFNs: Total annual catch of Distant Water Fishing Nations’ Fleets (fishing jack mackerel outside the Chilean

EEZ). (b) The Chilean fleet’s TAC at column (3) is binding for catches obtained both within and beyond the Chilean EEZ. The first

year with TAC in this fishery was 1999; this policy was resumed in 2001 (more details at Gomez-Lobo et al. 2011). (c) For deducing

the Chilean fleet’s (implicit) fishing effort multiplier (λ) at column (4), we replaced at the Baranov equation (13) the annual catch

Y (N, λ) by its real historical values (column 1) and we simulated the stock dynamics: starting from the initial vector of abundances at

age (for year 2002), we applied the stock dynamics (equation 12) while considering the deterministic version of the Ricker recruitment

function (equation 15), including the deterministic effect of El Niño events (in those years when it occurred, based on the definition

stated at footnote 31). Sources: (1)-(2), (5)-(7): IFOP (2013); (3): Subsecretaŕıa de Pesca (Chilean Fisheries Regulator); (4): authors’

own calculations

Biological model This appendix details the model in §4.2.

The model is age-structured, with a Ricker stock-recruitment function. Abun-
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dance dynamics are given by{
Na+1(t+ 1) = exp (−(Ma + λ(t)Fa))Na(t) , a = 1, . . . , A− 2

NA(t+ 1) = exp (−(MA−1 + λ(t)FA−1))NA−1(t) + exp (−(MA + λ(t)FA))NA(t)

(11)

where Ma is the natural mortality rate of individuals of age a, Fa is the mortality

rate of individuals of age a due to harvesting between t and t+1, supposed to remain

constant during year t (the vector (Fa)a=1,...,A is termed the exploitation pattern).

Total annual catches Y , measured in million tons, are given by the Baranov catch

equation (Quinn and Deriso, 1999, p. 255-256):

Y
(
N, λ

)
=

A∑
a=1

$a
λFa

λFa +Ma

(1− exp (−(Ma + λFa)))Na , (12)

where ($a)a=1,...,A are the weights at age.

The spawning stock biomass (SSB) is given by the expression

SSB(N) :=
A∑
a=1

γa$aNa , (13)

where (γa)a=1,...,A are the proportions of mature individuals at age a (some may be

zero). Annual recruitment is a function of the SSB with a two years delay, i.e.,

depending on the spawning stock biomass of two periods ago:28

N1(t+ 1) = αSSB
(
N(t− 1)

)
exp

(
βSSB

(
N(t− 1)

)
+ w(t)

)
, (14)

where {w(t)} is a random process reflecting the impact of climatic factors in the

stock recruitment relationship (see below).

We use the parameters estimation provided by Yepes (2004), which rely on official

data from the Instituto de Fomento Pesquero (IFOP).29 Parameters of the Ricker

recruitment function at expression (14) were estimated by using linear time-series

28This 2-years delayed effect is due to the biological growth dynamics of the species.
29Subsecretaria de Pesca, Valparáıso - Chile: Cuota Global de Captura para la Pesqueŕıa del

Recurso Jurel, Año 2001 (SUBPESCA, 2000); and Instituto de Fomento Pesquero, Valparáıso -

Chile: Informe Complementario Investigación CTP Jurel, 2003: Indicadores de Reclutamiento

(IFOP, 2003).
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analysis. The estimated parameters were α = e2.39 and β = −2.2 · 10−7 (see Yepes,

2004, p. 56). The values for parameters Ma and Fa are taken from IFOP’s official

model for this fishery, so that Ma is equal to 0.23 for all a and Fa is equal to the

vector of averages values of Fa during 2001-2002.30

Stochastic model Following the statistical analysis in Yepes (2004), we simulate

El Niño uncertain cycles using a sinusoidal function with random shocks.31 The

random process w(t) supposed to capture the effects of the El Niño phenomenon has

a periodic part and an error term, w(t) = −0.12× niño(t) + ε(t), where

• the estimated error terms {ε(t)} corresponds to ε(t) = 0.71ε(t− 1)− 0.65ε(t−
2) + µ(t), where {µ(t)} is a sequence of i.i.d. random variables with Normal

distribution N (0; 0.18),

• niño(t) = 1{−1.2 sin(18.19+2π(t−1951)/3.17)>0.5} is a dummy (0 or 1) variable reflect-

ing the presence of El Niño phenomenon.

Simulation process From a theoretical point of view, it is possible to determine

the strategy that maximizes the viability probability by solving the dynamic pro-

gramming equation characterizing the viability problem (De Lara et al., 2006). One

can even obtain a closed-form solution for some problems (De Lara and Martinet,

2009). Determining optimal strategies in dynamical optimization problems under

uncertainty is, however, not easy. Optimization in the stochastic viability frame-

30See Subsecretaria de Pesca, Valparáıso - Chile, SUBPESCA (2006) Pre Informe Final. Inves-

tigación Evaluation y CTP Jurel 2006.
31Based on Chilean marine biologists advice, Yepes (2004) calculated the occurrence of El Niño

phenomenon from the National Oceanic and Atmospheric Administration (NOAA) data on sea

surface temperatures measured at the region known as Niño 3.4 (120W-170W, 5N-5S). NOAA

computes the Oceanic El Niño Index (ONI) as the difference of the current sea surface temperature

(SST) with respect to the historical average of SST obtained from the period 1971-2000. Then a

series of 3-months moving average is computed, and it is said that El Niño occurs when this average

is greater than 0.5 oC during five consecutive months (see the expression of niño(t)). The ONI is

modeled via a sinusoidal function, whose parameters are estimated via statistical methods (using

a non-linear iterative algorithm (Yepes, 2004, p. 64)), to represent the different cycles of El Niño.
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work is not an exception. In particular, the curse of dimensionality can be a serious

obstacle to compute optimal viability strategies.

From a practical point of view, it is possible to estimate the viability probability

of any given strategy by means of Monte Carlo simulations. A random generator is

used to produce scenarios following the distribution P. For each scenario, a given

management strategy is applied. If, for the corresponding trajectory, all the via-

bility constraints in (4) are respected in each time period over the whole planning

horizon, the scenario is viable for the applied management strategy. When the num-

ber of scenario tested is large, the frequency of viable scenarios can be used as an

approximation of viability probability.
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